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zu, An asymptotic analysis is given of the compressible, laminar

boundary-layer flow of a dilute gas-particie mixture over a semi-infinite

AL flat plate. The analysis extends existing work by considering more
[PC) realistic drag and heat-transfer relations than those provided by Stokes. A
by - more general viscosity-temperature expression is also incorporated into the
,“‘ analysis. The solution involves a series expansion in terms of the slip
'. j‘ parameter of the particles. The numerical results, including the zeroth and
o . first-order approximations for the gas and particle phases, are presented
o for the two limiting regimes: the large-slip limit near the leading edge
;:i':q and the small-slip limit far downstream. Significant effects on the flow
ol produced by the particles with Stokes' and non-Stokes' relations are studied
f;.::, and clarified. The effects of some nondimensional similarity parameters,
j:t.: such as the Reynolds, Prandtl and Eckert numbers, on the two-phase
" boundary-layer flow are discussed.
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Notation

coefficient in Eqs. (5.4) and (5.20)
coefficient in Eq. (5.4)

coefficient in Eqs. (5.5) and (5.21)
coefficient in Eq. (5.5)

coefficient in Eqs. (5.6) and (5.22)
coefficient in Eq. (5.6)

specific heat of a gas at constant pressure
specific heat of a particle material

specific heat of a gas at constant volume
drag coefficient for a sphere in viscous flows

Stokesian drag coefficient for a sphere in viscous flows

particle diameter
normalized drag coefficient

x-component of the drag force per unit volume acting on the
gas

y-component of the drag force per unit volume acting on the
gas

gas Eckert number based on freestream temperature
transformation function for gas velocity
transformation function for particle velocity
first-order function defined in Eq. (3.34)

heat conductivity of a gas

Mach number

Nusselt number based on particle diameter

gas static pressure

gas Prandtl number
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i Ay rate of heat transfer at the wall
‘.'-.I
Q total heat transfer per unit volume to gas from particles

] \.

A%
i Y R gas constant
T

gs Rep particle Reynolds number based on freest eam velocity and
fat, particle diameter
oy Reg slip Reynolds number based »yn particle slip velocity and
) j particle diameter
%
:v* Re flow Reynolds number based on freestream velocity and
~E§ velocity-equilibrium length
St S Sutherland constant
i“} T gas static temperature

ﬁ
§ Tp particle temperature

o Ts temperature defect between gas and particles

v“.'-
.- u x-component of gas velocity

{? up x-component of particle velocity

! ug x-component of particle slip velocity
:‘
{I} u(1) first-order velocity of gas, defined in Eq. (3.35)
[
{‘1 v y-component of gas velocity

; Vo y-component of particle velocity

")
; : Vg y-component of particle slip velocity
Y
;%f X horizontal coordinate along the wall

O y vertical coordinate normal to the wall

.-,,.:
e Gre b
‘2§ ek Symbols
0
3‘E a ratio of specific heats of two phases
N B mass loading ratio of particles
L)
o - Y ratio of specific heats of gas
A
' 8 boundary-layer displacement thickness
gﬂ; n similarity variable for boundary-layer solutions
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first-order temperature of gas, defined in Eq. (3.36)

velocity-equilibrium length
dynamic viscosity of gas
kinematic viscosity of gas
density of gas phase

density of particle phase
density of particle material
velocity-equilibrium time
temperature-equilibrium time
shear stress at the wall

dissipation function due to the relative
particles in a gas

stream function for particle phase

wall conditions
freestream conditions

reference values

dimensional quantities
zeroth-order quantities

first-order quantities

motion of

first-order derivative with respect to similarity variable

n

second-order derivative with respect to
variable n

modified properties for gas-particle mixture
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1.0 INTRODUCTION

1.1 Motivation for the Present Study

Gas and solid-particle flows are encountered in many different fields,
Typical examples occurring in nature are dust storms, forest-fire smoke and
the dispersion of solid pollutants in the atmosphere. Many processes in
industry utilize gas-particle flows, such as transportation of pulverized
materials in pneumatic conveyors, separation and classification of particles
in cyclone or other separators, fluidization in chemical reactors, and
combustion of powdered fuels in combustion chambers. In addition, gas flows
with suspended solid particles have various applications in science and
engineering, for example, satellite drag, ablation, MHD generators, solid
propellant rockets, laser-Doppler anemometry and blast waves moving over the
Earth's surface.

For some applications in pipe or nozzle flows and €lows over bodies,
the behaviour of such two-phase flows at a solid surface is extremely
important, Hence, it 1is necessiry to study boundary-layer flows of a
gas-particle mixture. From solutions of gas boundary-layer equations, it is
possible to determine the effects of solid particles on the boundary-layer
characteristics, say, shear stress, heat transfer and boundary-layer
growth,

The problem considered in this report is the laminar boundary-layer
flow over a semi-infinite flat plate in a compressible gas containing
uniform, spherical solid particles. This study provides basic physical
insight into the flow of such a two-phase system, even though the solution
is for a relatively straightforward problem. Moreover, as a parallel study,
the asymptotic solution can be used to compare with finite-difference
solutions and to verify independently the correctness of the
finite-difference scheme [1].

1.2 Previous Work

Several authors have worked on the problems of two-phase boundary-layer

flows. Most of these analyses were based on the assumption of an
incompressible fluid [2-16]. Singleton [17) first treated the case of a
compressible dusty-gas boundary-layer flow. He derived the governing

equations and obtained asymptotic solutions for two limiting regimes: the
large-slip regime near the leading edge and the small-slip regime far
downstream. However, he assumed Stokes' relation for the drag force and
heat transfer, which is valid only for the case where the particle slip
Reynolds number is of order unity. He developed his governing equations
assuming that the gas viscosity-temperature relation has the special form of

u*/u% = JT*/T*, and gave his solutions for the case where the Prandtl and
Eckert numbers of the gas are equal to unity.




B
P 1.3 Present Study
o

l;h"-
f?ﬁg The present analysis will extend Singleton's analysis to the more
now general problem of compressible laminar dusty-gas boundary-layer flows over
o a semi-infinite flat plate. It will present the basic equations under
{&kf conditions that the drag and heat transfer “etween the two phases may have
el different relevant forms instead of Stokes' relation and that the power -
:?3 index in the expression for the viscosity coefficient cen have arbitrary
et values from 0.5 to 1.0. The paper will give the numerical results in the
. two limiting regions at several values of the Prandtl number, Eckert number, ‘
52' Reynolds number and the viscosity power indtec,
.ﬁq

at

83 1.4 Basic Assumptions
5.' The basic assumptions are as follows:
"oy
’ o (1) The gas is perfect. The specific heats of the gas are constant. The
AN Prandtl number of the gas 1is constant. The viscosity and heat
4 conductivity of the gas have a power-law relation with the gas

temperature.

?-:: . .

» (2) The solid particles are rigid spheres of uniform size. The number

<

xj density of particles is sufficiently high to treat the particle phase
as a continuum. However, the particles are also sufficiently dilute to
consider them as non-interacting.

,‘;_ (3) The particles have no random motions and therefore the particle phase
n&u does not contribute to the static pressure of the two-phase system,

(4) The volume fraction of the particle phase is assumed as negligible.

%Y This implies that the coefficient of viscosity for the gas-particle
i mixture can be taken as the viscosity of the gas phase alone.

?‘
;ﬁ; (5) The specific heat of the particle material is constant. Its thermal

conductivity is much larger than that of the gas and hence the
temperature inside each particle can be assumed uniform,

;it (6) There is no radiative heat transfer from one particle to another,
[}} There is no chemical reaction, no coagulation, no phase change in the
o two-phase system. There is no particle deposition on the surface of
the plate.
3
::& (7) Only the processes of drag and heat transfer couple the particles to
¥ I; the gas. The drag coefficient and the Nusselt number for a single
.52' sphere in a viscous flow are assumed valid for the particle cloud.
' Other force interaction terms, such as 1ift, buoyancy and gravity, are
:é?, neglected.
K
U
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(8) There is no dry friction as the particles slide along the wali. The
slowing down of the particle motion is only due to the gas whose
velocity decreases to zero at the wall.

(9) The two-phase flow is steady. The flow Reynolds number is sufficiently
high so that a laminar boundary-layer forms on the surface of the flat
plate, but Jlower than a critical value so that no transition to
turbulence occurs.

(10) The usual boundary-layer assumptions are still valid for the two-phase
system and consequently the variation of pressure across the boundary
layer can be neglected. In addition, for the flat-plate problem, there
is no pressure gradient in the external flow. The particle phase and
gas phase in the external flow are in equilibrium.

2,0 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

2.1 Governing Equations

Let x* and y* be the distance along and normal to the wall,
respectively. The origin is fixed at the leading edge of the plate. The
geometry of the problem is sketched in Fig. 1. The conservation equations
for steady two-dimensional laminar boundary-layer flows of a compressible
gas-particlie mixture over a semi-infinite flat plate are as follows:

For the gas phase:

Continuity:
) P e] gk =
2 pfur + Z_ pfv* = ( 2.1
x> dy* ( )
Momentum:
o* (u* du* L oyx r) - D p* W*Y 4 Dx 2.2
(o 2o r 20 - 2 (e 2 (2.2)
Energy:
aT* dT*y _ AT* du* 2
*C*U*——+V*———— =Y k*_+u*___ +¢+ 2.3
replor Mo v Ty = 2 (e Ay v e @) @ (2
State:
p* = P*R*T* (2.4)
3

R ST PN L R S RN



W] For the particle phase:
" Continuity:
= pB uE + o ﬂﬁ vs =0 (2.5)
x-momentum:
u ou

o pB(u* L +vr _B)= -Dx (2.6)
N y-momentum:
e v

*(U* ___E_ + y* __E_) = -Dy (2.7)

B Energy:

R aT* aT*
aaly o cg(u; "a'x% + vy _&g) = -Q (2.8)

«ﬁﬁf In Egs. (2.1)-(2.8), the interaction terms between the gas and
particles can be expressed by (see Appendix):

. * _ %
) Dx = o EE?*_E_ D (2.9)
v

v¥ - v¥*
Dy ps _L{*__D (2.10)

e v

A
o ¢ = (uf - u*)Dx + (v - v*)Dy (2.11)
o T* - T
o Q=ptcx P N (2.12)
P s % 2

Tyt where
D =2 (2.13)

(]

B R

471 AN A

T T T T T eV "
DA 2N 7




cp =24 (2.14)

S
pX d*2
* o= 3 2.15
Ve ( )
_ ok dx2

Here, D represents the real drag coefficient Cp normalized by the
Stokesian drag coefficient Cpy and Nu is the Nusselt number based on the
particle diameter. According to the assumption (7), D and Nu determine the
gas-particle interaction. When the interaction law between the gas and
particles just has the Stokes form, D = 1,0 and Nu = 2,0, It is well known
that the Stokes relation is valid only for small slip Reynolds number of
order unity. In general, D and Nu are both functions of the Reynolds number
and Prandtl number. From the definition of slip Reynolds number and Prandtl
number,

p*/(uf - u*)2 + (v§ - v*)2 d*

Reg = = (2.17)
* *
pr=p ¥ (2.18)
k*

The local equilibrium-time parameters, <} and v, are a measure of the
relaxation process. For example, the velocity equilibrium time is the
time elapsed for a particle to reduce its relative velocity to e~ of its
original value if the force accelerating (or decelerating) the particle
toward the gas velocity is given by the Stokes drag. These two local
parameters are functions of the local gas temeprature since the viscosity
coefficient u* and the heat conductivity k* are functions of the gas
temperature. It is convenient to introduce an equilibrium length A%, which
is based on the freestream parameters:

* 2
_ o5 d*

* = u* (2.19)
18u%

The two-phase relaxation process takes place throughout the equilibrium
length., Therefore, it is reasonable to choose A% as the characteristic
length of the dusty-gas boundary-layer problem. Then the equilibrium-time
parameters can be expressed in the form

-

VO ‘.{" ‘.'4".'\(4.,{.;
A o ;

e e e e S




T = i . = (2.20)
3 3 - S S
: = 2 Pr 2 e e (2.21)
% * 2 CE ut .
9
b Thus, the basic boundary-layer equations (2.1)-(2.8) become
0 * o ok = ’
Z_pfu*r + = p*tv* =0 (2.22)
, dx* d dy*
;
1,
N *
' w(ge QU* o x DU¥y D *_au_*+*u*-u* ..u_f_L*D 2.23
: or(ur 22 e v B0y < 00 G RO gplup - ) S (2.23)
I
& 2
3 or(ur D15 4 yw B*y 2 L 3 (e ANy, (At
1 ax* dy* Pr oy* dy* c* y*
’ p* 9 2 u‘; u*
S +E?;[(u;-U*) t g v D
\! 1] ®» P
‘ 1 u* *
¢ + o2 px(T* - T*) 2 ¥ Ny (2.24)
37 B %=
'*
Ao
t p* = p*R*T* (2.25)
B
o] x * ) 3 * = 6
, o fy up t oy B VP 0 (2.26)
¥
Az
&) * * *
" ot 2By B o () L2ty (2.27)
2] P Ax¥ p Qy* )\:a p:::
ﬂ.l
A Y a * av* :"
o ut By 2P o (yx L yry U2y (2.28)
‘ P ax* P ay* P AL uk
: T* * *
. u*3.2+v*3T_B=-_“_(T*-T*).u__“_*Nu (2.29)
3 P axx P ay* pr P A uk
'
»
sl
»
Y
_ 6
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where a is the ratio of specific heats of the two particles:

(2.30)

R
n
B A

For boundary-layer flows, the normal component of velocity is usually a
small gquantity. It means that the contribution of the normal velocity is
often neglected compared with the tangential velocity. Then, the expression
for the slip Reynolds number, Eq. (2.17), becomes

~ p*lut u*Id*

Reg = = (2.31)
and the gas energy equation (2.24) reduces to
orlur 2w ur T - LS (o 21 v )
c B 2B e B (e By (2.32)
cx P . ouk, o 3pr P TS

In order to obtain a closed set of equations, it is required to specify
the expression for u*(T). From the standpoint of kinetic theory of gases,
the most exact relation for the viscosity of a perfect gas is Sutherland's
form [18]:

u* Ts + S* l: 3/2

L G 2.33
wg  T* + S* 7% ( )

where S* is the Sutherland constant. This form of Sutherland's relation,
however, is not suitable for the series-expansion method which is used in
the present analysis. The other viscosity form used in many analytical
solutions to the boundary-layer equations is of power form, which is written

as
w
%} = (1) (2.34)
7
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where w is the power index which lies between 0.5 and 1.0. This relation
for the gas viscosity is readily applied to the series-expansion method, as
shown later.

From the basic assumption (10), the pressure is constant throughout the
boundary layer:

p* = constant (2.35)

With this condition (2.35) and the gas state equation (2.25), the gas
density can be expressed in terms of the gas temperature:

L

ok T

(2.36)

Substituting Eq. (2.36) into the basic equations (2.22), (2.23),
(2.26)~(2.29) and (2.32) with the power relation for the gas viscosity
(2.34), the following equations are obtained:

T* 92: + 9!: = y* Ql: + v*.él: 2.37
(bx* a_y*) ox* dy* ( )
w g u%, wtl
wr D B (T 2 (@) R - S )T 0
x dy T oy* Y oy % N Te (2.38)

* * vE T . W aT# vE  rx wtl x.2
ur 1% 4y BT Ty (@) 3y = ()7 (&)

ox* y*  Pr TR y* TR y*T ch T y*
* * ¥ *
b B x2S I L LB e ey VB D (2039
prch P LT 3Pr o5 P LT
o) * gk 4 O * yk =
Fory P Up + Ey—* o Vp 0 (2.40)
du* du* ug
u* P + vX P - -(u* - u*) —_— (I:)w )] (2.41)




ovx* wvx u* . .0
* —R * = - * * _: _T__
aT* aT* u* .t
x _P * P X Tk L THy 2 l_
Up x* + vy 3y TS (Tp T*) 0 (T;) Nu (2.43)

Under the conditions of w = 0,5, D = 1,0 and Nu = 2.0, the equations
(2.37)-(2.43) reduce to those derived by Singleton [17].

Physically, the boundary-layer flow-field of a two-phase mixture can be
divided into three distinct regions (see Fig. 1). These regions are divided
according to the nondimensional slip parameter x*/A%* as follows: the
large-slip region (x*/AX << 1), the moderate-slip region (x*/A% ~ 1), and
the small-slip region (x*/A%X >> 1), Following Singleton [17], a
small-parameter expansion method was used to solve the boundary-layer
equations for dusty gases. Only the asymptotic solutions in the two
limiting regimes can be obtained by this perturbation technique: the
large-slip approximation for the near leading-edge solution and the
small-slip approximation for the far-downstream solution, respectively.
Clearly, the large-slip regime is characterized by a frozen flow where the
gas and the particles move independently, while the small-slip regime is
characterized by an equilibrium flow where the gas and the particles move
together (see Fig. 2).

2.2 Boundary Conditions

The boundary conditions for the gas phase are:
(1) At the wall, there 1is neither slip in velocity nor jump in
temperature:

u*(x*, 0) = 0, v¥(x*, 0) = 0, T*(x*, 0) = T (2.44)

(2) As y* approaches infinity, the flow parameters must match those in the
external flow or the freestream:

u*(x*, =) = u%, T*(x*, =) = T% (2.45)

The boundary conditions for the particle phase are:

(1) At the wall, there is no mass transfer
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RS v;(x*, 0) =0 (2.46)

(2) As y* approaches infinity, the flow parameters must match their
" freestream values:

T5(x*, =) = T§ pp(x*, =) = of (2.47)

Pe’ P P’ Po

gy Since the particles and gas are assumed to be in equilibrium in the external
"ol flow, the freestream parameters for the particle phase can be readily
) determined as

B Btum o Tt Tho s (2.4)

g where B is the mass loading ratio of the particles. Otherwise, the
~— two-phase external flow must be solved first in order to obtain the outer
.- boundary conditions for the particle phase if the particles are not in
) equilibrium with the gas in the freestream.

3.0 LARGE-SLIP APPROXIMATION

4.*“
%2% 3.1 Transformation of Boundary-Layer Equations
N
s
) . . .
»y For the large-slip region, it is convenient to define a stream function
¢p for the particle phase:
e
Ay
i g
y * ok = ok p
e o Yp T P, 5w (3.1)
ét".
\ 3 a‘b*
s Cal x gk = E
o BT e s )
g
%
> Then the continuity equation for the particle phase, Eq. (2.40), is
v satisfied automatically.
N
‘tik In this region, the following nondimensional flow variables and
.xi: function transformation are chosen:
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u E;, v = /// Ex - V5,
uk vE ko

> _ y* 3.3

o (3.3)
*

-I— o= 2 (3.4)

= - = 1 x
f=mwm-yv, fp / ETE:GET;; ¢ p (3.5)

' 4 0.3
= - %,
Pk Bek
*
u=—ﬁ£

With Eqs. (3.1)-(3.3) and (3.5)-(3.
expressed as

T*
T = Tg (3.6)

(3.7)

6), the particle velocities can be

f
at = uzfL ) (3.8)
fp an

A% o
® pp O

Substituting the above expressions,
and (2.41-(2.43) are transformed into the

T(&l,.,u _1 af y -

—— —_——) = u

X 2x 2x o
gu_f W T 3 qedy,
X 2x ¥dn  2x O an

11

~ ,\' .‘!,.’-"‘4"'}'\{.‘1’. o 0o <‘»_.f,(—:5,‘-“’5‘;:\.-.’ RO TGP
bt (DS B IS LK AL Al g v o

b ' 8

-0 9y (3.9)

the basic equations (2.37)-(2.39)
following form:

a._f o (3.10)
X 2x dn
f
eTe*l (P - 5y )D (3.11)
on p

ST -~ £ A p“- “).‘.h » - i
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; oy Ll oaf. Lo (qudly, Eeoqu@an?, g 10 (Tl )Y
) ox 2x  2x dn  2xPr dn an 2x an Pp an
+ B o TYT. - T)Nu 3.12
: = (Tp ) ( )
b
) of d2f d2f af . .9 d
| P (o (Xtp . n 2oy % (% n %%y
an P3xan  2x an2 dn  Ax 2x ?n

of

“ = -p. 2 T9_P - o ulD (3.13)
.‘ pp (a'ﬂ pp )
L}
¥

d2f of, f d2f of

o Mo @ 1 ¥ fp _n 2T, Opy
; Pan a2 X O gy2 2x dx3dn 4,2 3N
2
N f of , 0 f of af
b O % _ p %% _Tp %y Tpylp.n Ty
- dn ax ax dn 2x on X 2x 2x 31
'
[ 2 2
3 fo . 0f f of f of
! o ey o My Pl T oo f o
’ P *ax 2x " dxdn  2x an2 p B 2x  2x 9n 2x P x P
: (3.14)
; of ol ol of f
" P _P._P (R P)=0-_Z% o THT, - T)Nu (3.15)
. 3  x dn  dx 2x 3pr P P
A
where Ec is the gas Eckert number based on the freestream temperature,
o
3 U*2
] Ec = —2_ = (y- 1)M_2 (3.16)
» cx T%
p
» 3.2 Expansion in Terms of the Slip Parameter (x*/AX)
3
The following expansion in terms of the slip parameter (x*/\%) is
made: i
E
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f(x, m) = £0)(my + xf(l)(n) +
u(x, n) = u(o)(n) + xu(l)(n) + e
T, m) = TO(ny + 1)) + .., (3.17)

folx, m) féo)(n) + xfél)(n) + ...

Tolx, ) = 70 (n) + x1{Dn) + ...
op(x, 1) = of0(m) + xefL)(m) + ...

Putting the expansion (3.17) into Eqgs. (3.10)-(3.15) and equating
coefficients of (x)" where n = 0, !, ..., the zeroth and first-order
equations for the large-slip limit are obtained as follows.

The zeroth-order problem is:
' 0)’
(0 -1 o) |00 2 g (3.18)
1(0)
£(0)

u(0)" 4 ( ( + w T(O)I)u(o)' =0 (3.19)

10" 4 pr _FO 4 LT 5000 e pru(@) )2 - g (3.20)

0) - o (3.21)

1(0) -y (3.22)
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0) -
p{0) = 1 (3.23)

with the boundary conditions
00 =05 ul®0) = 0; @) =15 700y =1 ; T0)(a) =1 (3.29)
f000) =00 £ () = 15 (0 (e) =1 Q0w <1 (3.25)

In fact, the equations for the particle phase, (3.21)-(3.23), are algebraic
expressions which represent the zeroth-order solution for the particles.
The boundary conditions (3.25) were already used in Egs. (3.21)-(3.23).

The first-order problem is

1(0)? 1(0) (0)w+]
- 2801 - u(Op (3.27)
' .2
() £(0) » 7(0) () 1)p £(0)1(0) . 7(0)
(Pr (O)Ml ' T(O) ) [(M Pr T(O)wz (T(O) )

-2pEcPr(1-u(0)?p -

(3.28)
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; nZoft)" - anpft) = 1) - e {t) L 210 (0 - ¢ (O (3.29)
i)

: nzfél)" _ 3nfé1)' + 3fél) = -ZT(U)w(n“(O) - f(O))D (3.30)
: .

. n]’(l)' - gr(l) = . 2a_ T(D)w(’[(o) - 1)Nu (3.31)

} p p 3Pr

u where the normalized drag coefficient D and the Nusselt number Nu are given
\ by their zeroth-order approximations. The boundary conditions are:

fMoy =0; M) =0; W(e)=0; TM(0)=0; T (e) =0 (3.32)
‘. (0 = 05 (@) =05 1 (@) =0 p{(=) =0 (3.33)

From the first-order approximate equations, Egs. (3.26)-(3.31), it is
seen that the loading ratio of the particles B appears oly in the equations
for the gas phase, i.e., Eqs. (3.26)-(3.28). In addition, it is possible
. to yet a more general solution which 1is suitable for any value of the

loading ratio, by introducing the new variables:

s F(my = ¢ M)/ (3.34)
U () = W (n)/a (3.35)
i (W) = TN ()8 (3.36)

Substituting the expressions (3.34)-(3.36) into Eqgs. (3.26)-(3.28), the
first-order equations for the gas phase become

" {0) (0)' ' (0)
U(l) f wT )U(l) -2 U U(l)
(U)w+1 T 0 T(U)m+1 Continued
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0),(0)* o). (0)' 0)' '
= [(w+l) £(0)y ; b o 10007 Jefl) . L ul®’ @(1)
o 1(0)2 1(0)
i
o (0)'
Y SRS F(1) - 21Oy (3.38)
KR (o
fon, ,._
A3
| " 0 ! ' !
2 @+ (pr L0 2 T o) . [unypr £0T°
A (o) 1(0) r {oyw?
s s 2or 0 jg(1)
r(0)w*t
.'
S0 ! ! 0)' 2
B = ~2ecpr(u{0) y(1) 7y L opp "T‘('i)}'f (1) - 2ecpr(1-0(9)% % (1-1(0) ny
v 0
% 70 (3.39)
AL
L0,
Ots
% Similarly, the boundary conditions (3.32) take the forn
‘_.
hus (1) gy = 0; ul) gy = 0; (1) (w) = 0; @) (o) = 0; @(1) w) =
B (0) (0) (=) (0) (=) = 93 40y
s {'.
o
3.3 First-Order Problem and Interaction Terms
JN]
N From Eqs. (3.18)-(3.23) and (3.26)-(3.31), it is found that the
e’"‘- interaction terms between the gas and particles appear only in the
:p%. first-order approximation. In other words, the zeroth-order equations can
Yol be solved without knowing the interaction relation between the two phases.
. However, in order to obtain the first-order solution, appropriate
,i:fﬁ expressions for the drag and heat transfer between the two phases should be
L given.,
SN
] As mentioned before, when solid particles move through a gas at very
low relative velocities, that is, when ReS < 1, the Stokesian form can be
e applied. For the case where Stokes' relation applies, then D = 1,0 and
Nu = 2.0. When the relative, or slip, velocities between the particles and
,ﬂ':.; the gas increase to a higher value, Stokes' relation is not valid.
,"j Therefore, a relevant form for the interaction should be assumed for the i
* non-Stokesian case. In the case of larger slip velocities, it may be
A
[
Ry
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et
e
B
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o
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reasonable to apply the following dray and heat-transfer relations
[19, 20]:

Cp = 0.48 + 28 Re;0+8" (3.41)
Nu = 2.0 + 0,6 Prl/3 Resl/2 (3.42)

The drag coefficient Cy and Nusselt number Nu for the non-Stokesian
case in this analysis, given by Eqs. (3.41) and (3.42), are functions of the
slip Reynolds number Re. as well as the Prandtl number Pr. Comparing the
non-Stokes and the Stokes relations indicates that these two cases are in
agreement only for the slip Reynolds number of order unity or less. As the
slip Reynolds number becomes larger than unity, the Stokes relation
underestimates the drag and heat-transfer between the gas and the particles.
In general, the non-Stokes relation agrees with the standard dray curve [21]
much better than the Stokes relation. Correspondingly, the normalized drag
coefficient is

D= o Reg + L Re 0u1S (3.43)

In the series~expansion method, the slip Reynolds number Re_ should be
expanded just as the other quantities. Neglecting the first-order small
quantities, the slip Reynolds number can be expressed as

1 - ul0
(o)t

Re_ = Re

s = Re (3.44)

where Rep is the particle Reynolds number based on the freestream velocity

p* U* d*
Re, =2 % (3.45)
p px

The zeroth-order approximations for D and Nu can be obtained by
substituting Eq. (3.44) into Eqs. (3.42) and (3.43). Then the first-order
equations can be solved numerically. The equations for the yas phase, Eqs.
(3.26)-(3.28), consist of second-order, ordinary-differential, simultaneous
equations with two-point boundary values, similar to the case of the
zeroth-order equations for the gas phase. The solution to the equations for
the particle phase, Egs. (3.29)-(3.31), can be obtained in the integral
form:

S R R U -i
g EUL AN VR AR R A .




(0) 0)“
oll) = 22 T (x - £0))ndx - n2 J 1(9) (xu(®) - £(0))pqx
® X ® x4
-'O'y_“
hedy
i
5‘;; n 0 w
;3@,‘:% v f 1(0) (xu(0) - £(0) )pgx (3.46)
] © x 2
ety
!',;,E“
R
B n w n w
. ' 0 0
5N tD = anz f IO7 (400 L e gy f IO (4 00) L (0) pgy
:s;:.: o  xY4 ® x2 (3.47)
il
.t't‘
‘C*C n 0 w n 0 w
K (1)« ap 1 IO (0 0 gy gy T (4, (0) L £(0) gy
R - x- ® X (3.48)
-':h‘..
_:'
{03 n _(g)w
s 0

?%z il = 22 1 (T(O) - 1)Nu dx (3.49)
o P Fr . 43
RYA R
;:'; The quantity fél)' = dfél)/dn, given by (3.47), can be used to give the
"'u' first-order approximation of the tangential velocity for the particle phase,
::3.. u(1 . From Eq. (3.8), the x-component of particle velocity can be given by
:?e::"l the derivative of the transformation function fp(n):
‘(‘;'l.
D of
! up = 1 7p (3.50)
o Pp 21
~:'h
"o In addition, in the large-slip limit, the nondimensional density of the
Yyl
P

p?rs,ide phase, Pp s is of order unity since the zeroth-order solution is
pd0) = 1, i.e., €. (3.23). Substituting Eqs. (3.17), (3.21) and (3.23),
Eq. (3.50) yields the series-expansion form as

2. B

e up = 1+ x(FAD o oDy w |, (3.51)
o p P P
2
TR
:g" Clearly, the first and second terms in Eq. (3.51), represent respectively ’
i the zeroth and first-order approximation of the tangential particle velocity
DO Y N
':‘:w UP.
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4.0 SMALL-SLIP APPROXIMATION

4.1 Basic Equations in Terms of Slip Quantities

For the small-slip region, it is convenient to employ slip quantities
as dependent variables since they are small quantities of first order with
respect to the slip parameter (A%/x*). The slip quantities are defined as

uf = uk - U, vE = vE - v, =T - T (4.1)

Putting Eq. (4.1) into the basic equations (2.37)-(2.43) and making
some algebraic manipulation results in

T*(%E; + %!;) = u* %?; + V*'SI; (4.2)
X Y X Y
duk ovk dp* dp* dpX
(u5+ Sy WX, NFy . ox Py *_€B+u*_PP_+v*_€P.—0(43)
b dx*  dy*  dx*  dy* dx* dy* dx* dy
' 4 * * *
P (ur JU% oy DUT s v* X5 u* EL§,+ * _S)
p* S ax* S ay* x> dy* S ax* S y*
* * w
TN QI (PR TPV il QR MY o Tl RV (4.4)
p* dx* dy* p* dy* T, oy
Yy
* * * *
u*au +v*m* u*_a_ui v*?_g+u*_.l‘i+ *_a_u_5+_p1°a [(T*)wm*]
S ax* S ay* dx* ay* S ax* S ay*  o* ay* TET oyt
Ut., p* T* [N
= - —i_fn (1 + _p-g)(_rta] Ug (4.5)

ov¥ vk vk vk
u.g ov* " v.g v* + u* S FRVE S 4 ug S 4 V-g S + y* ov* + y* v*
Ax* dy* dx* dy* dx* dy* dx* dy*

Continued
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A LR
- = }\—; (-E) Vs (4-6)
:iﬂ" * K * * * *
N pEcS(u*a_Tf_+v*E_+u*&+v*aT+u*aT+*aT)
3 a p* CB S ax* S dy* dx* dy* S Bxx 'S y*
W
2
g U i S TATR I W e 4l D R
o p* c"‘Jr ox* dy* Proo* ay* T%  oy* c"; pr TR Ty
Jog)
Ef"te x u% Te W
- = % e (T)ys2 (4.7)
p* el A TR
' p
*\'t.
4 * *
*.-'-' u* _6T_*+v*a_T:+ u*§+ v* 6T5+u*_bI:+ v*_a_T_S_
S ax* S ay* ax* dy* S ax* S yy*
8¢
ll.’.‘!' w * w 2
oY L, LW (T5)° 3% ] 4 o (169 ur)
Lo o Tx’ Ay Xk Tk’ ‘auk
r\\j Pr p ay T  dy p*ch %" "9y
158 x utp ut, x C*
v SO (Ll P S G - [ I (4.8)
o prch AL TX, 3Pr A% o* cy T,
N
'.|.("
’:‘o':
The conditions of D = 1.0 and Nu = 2.0 are already employed in Egs.
Y (4.2)-(4.8), since the slip velocities are always small quantities in the
:‘,: " small-slip region.
b
l.".‘
R 4.2 Transformation of Basic Equations
".T Let
.'; * 2(1+B)x* T* * T
u=.u_, vV = .&v*, T=_ p=P =_2 (4.9)
i VL Ut T L T
LF.”
s
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B
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u* T* * *
e A AL L R - N C R 1)
ut, v U, T S S

4 and
{ (1+8)u%
‘%‘ R L (4.11)
*
pe (4.12)

As in the large-slip 1limit, substituting Eqs. (4.9)-(4.12) into Eqs.
(4,2)-(4.8), the dimensionless basic equations can be obtained:

T u 7T 3, a.f aT.y (4.13)
Ax 2x 2x A1 X 2x 3n

du
p(__s-ﬂ__._s+_l_§_+3“_+_‘i-_1_9f)+us_e9-ﬂ_u_p.P_
P ax 2x 3n 2x 3n & 2x  2x 3n

v. 0 3 5}
s Py Pl £ 1y (4.14)
2x dn BX 2x 3n
8p.T (u E-n_u E+V_Sg‘.+u3§_—f_iu_ﬁ+u &-.n_u%
P s ax 2x S an  2x A1 Ax 2x 3n S ax 2x 5 m
+i§3“_5)+(1+apr)(d?‘_i f uy_ MH4B7 38 (puwdy=-9g  (4.15)
2x dn P X 2x 3n 2X an an
ugu..-_n__u ﬂs‘!_@.#—u_a_u_s-f_gj_s'ru .%-n_uf_.
5 Ax 2x S 2n 2x dn dx 2% 3dn S ax 2x S 3n
Vo Mg 143 L3 rpw Al
$ 5 S 20 r 2 re MY = (148p TITH 4,16
2x In 2x An an P 5 ( )
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m_aﬂ-ua_f-ﬂ_uz-.ﬂ_fg+f_b_f+u %-u_6v5+!§ms-usvs
ox Ax 2x 2% dn  2x dn S $ 2x an 2x dn 2x
u f _n?2, w ., f _ 1 f n u
+ U, = - U — - S- U —F U, — - dyu, oy + Ly &E
S ax S ax 2x > dn 2x S om  x s 2x 2x S an

u

<
wn
o
-
+
=
v
-
(¢4
<
w
]
]
—

= 9 _— -1 __5 4,17
2x 9n X 2x 3n s ( )
T ol T \i
BoyT(ug -1y Ay Ys oy Ts f Fs oy s 0 Ts
P X 2x an  2x 37 ox 2x dnm x 2x an
Vg 0T T f Ty « 1+B . ® (rw 2T
+ = 2]+ (a+ T {u =2 - — =K T =_ [TT =&
2x dn J Bpp A x  2x an) Pr 2x an ( an)
2
- afc LB purl ()% . gregy TOtly 2 (4.18)
2% an P
AM_n g, A Ysar, s ¢ s, s n O, v 3
S 2x S an 2 an X 2x 9m S 2x O on 2x 3
s BT 8 (qudTy, g 148 qurl(du)?
2x Pr ?n an 2x on
- _ whl 2 2
EcﬂppT Ug T (a + BppT)T“’T,S (4.19)

4.3 Expansion in Terms of the Slip Parameter (AX/x*)

In the small-slip 1ilmit, perturbation expansions are made in terms of
AX/x*:




_ ooy PR e T T PO - L T TR T o T —T
N
o u(x, M = ulO(n) + Ly + ...
! X
BX
T, ) = 1O () + L1y 4,
i
X/
oy
%) (1)
e uglx, M = Zug () + .. (4.20)
R
I (1)
“ vs(xa ﬂ) = 'i— vs (ﬂ) +
by
B L (1)
Tox, M =17 () + ...
;i'
. _ (o) L (1)
' pp(x’ n) = pp (n) + ;“ pp (n) + se e
ol
;3’ where x = x*/A* is the nondimensional slip parameter.
‘:.. Then, the small-slip approximation for the zeroth-order problem leads
o to
D, £(0)* -___T(g)' £0) - y(0) = g (4.21)
,,: T( )
)
W 00" 4 (F0) , ,T(0) ), (0)' g (4.22)
bt [0yt (o)
3
o“.'..
) " 0 0 ' ! v i2
o 70 4 g Lr p/a €O 1OV (0) L e (y(0) )21 0 (4.23)
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- oy = (4.24)
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with the boundary conditions

£000) =0; ul®(0) =0; wlO(a)=1; 100y =1,

w?

T(O)(m) =1
(4.25)

For the small-slip approximation, the zeroth-order solutions of the particle
velocity and temperature are the same as those for the gas and the
first-order solutions are given by the first-order slip quantities. The
zeroth-order density for the particle phase is given by Eq. (4.24). The
boundary condition for the particle phase density

pf,o)(m) = 1 (4.26)

4 | .

r: has been used during the derivation of Eq. (4.24).

}gﬁ The first-order equations for f(l), u(l), T(l) and p(l) are given by
W (1) _T(0) (1) - . T0) (071 4, ul® cy , O L)
:;t T(O) T(0)2 T(O) T(O) (4.27)
WY

% S, £00) @8Oy (0 )

008 r(0)* r(0)e*!
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_pp w1+ B/a) +1 1(0) £(0) H0)°2 (1)

1+8 T(O) T(o)l-w T(O)Ml
o e 1 mOFO" OO0 520 1)pr/ag (0502
B O (U 21(0)° ! p(oywr

_9pr £0,(07(0) 5pr2 g 4 gya £(0)°1(0)"  3pcpr2 £(0)%(0) "7,

4a T(O)w 4a 1+8 T(O)Zuﬁl 4a T(O)w

g £330 2 | 14 e 100" (1) . e (070 (1)

EcPr

(4.29)

f00" 0, O 0,V
1(0)
.- 040" (0, (0" w2 £(0),(0)7(0)" . £(0) % (0)" 2
T(O)Ml T(O)w"l 2 T(O)wz T(O)wl"3
1 [pr Lr /e £OITO )y 102w (9 5 (O
fO10° ) _p ul® ) _ 9 ) (4.30)
7(0)3 7(0)2 7(0)2
with the boundary conditions
M) =05 oMoy =0; uWie)=1; 10y =0; 1(H(e) =0
(4.31)
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_:5 The first-order problem in the small-slip Tlimit is determined by the
- second-order, ordinary-differential, simultaneous equations with two-poinc
-:{Q boundary values. In this aspect, it is similar to the first-order problem
' in the 1large-slip limit. But the solution to the above equations
el (4.27)-(4.30) is difficult to obtain, since these equations are too complex
oy and have high coupling. 1In addition, Eq. (4.30) has a singular point at n =
‘“ﬁ Ol Moreover, ? gqlnted out by Singleton [17], regard‘ess of th? gh01ce of
Q}w u (0 and T 1 (0), the resulting solutions to u'*/(n) and T */(n) from
DO Eqs. (4.28) and (4.29) always approach zero as n approaches infinity, making
‘ it impossible to pick out the correct solutions. Therefore, in this
‘\5} analysis, it was not attempted to obtain the first-order solutions to Egs.
,33 (4.27)-(4.30) but just the zeroth-order solutions to Egs. (4.21)-(4.24)
" f{ which are of more practical interest. The first-order problem for the
Ty particle velocity and temperature are readily obtained. With the series

expansion (4.20), the slip quantities of first order are given as

1\1

e

a2 1 0),,(0)'

g ui V(007 (4.32)
o 21(0)°
o
X 1 0)' 2

e VL1 (0024 6(0),(0)" | ¢(0),(0) TEOi (02 (4,33
N 27(0) T
n )
;;?:
p ) 1
[ S
SN fo (o) (4.34)
N . .

Y, Equations (4.32)-(4.34) are not d1{f ren% ?1 but Flfebra1c equations. The
Y values of three slip quantities ug and Tsl at any given point are
o determined from the zeroth-order solutlons for the gas phase.
M8
Vifl 5.0 RESULTS AND DISCUSSIONS

'a"-

-

ﬁ:: The zeroth and first-order equations for the large-slip and small-sltip

> limits can be solved numerically. They are a system of nonlinear,
- second-order, ordinary-differential equations. The corresponding boundary
e conditions are specified at the two end points, i.e., at the wall and the
i{f outer edge of the boundary layer. Mathematically, it is a two-point
o8 boundary-value problem and it can be solved by Gear's method [22].
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5.1 Large-Slip Limit

From Eqs. (3.18)-(3.20), the zeroth-order problem for the gas phase in
the large-slip limit is as simple as that for the boundary-layer flow of a
pure gas without particles. Therefore, as for the conventional viscous
flows of a pure gas, the Reynolds number, the Prandtl number, the Eckert
number and the viscosity power index are important controlling parameters in
the analysis of compressible, laminar, boundary-layer flows of a
gas-particle mixture. The numerical solutions of Eqs. (3.18)-(3.20) are
given in Figs. 3 to 5 and the influence of the parameters Pr, Ec and w on
the flow properties are shown in these figures and it is seen that their
effects are relatively small. Here, it is not necessary to discuss the
zeroth-order solutions for the gas phase in detail since it is the same as
the similarity solution for the flat-plate boundary layer of a pure gas.
Similarly, the zeroth-order solutions for the particle phase are readily
obtained, Equations (3.21)-(3.23) indicate that, in the zeroth-order
approximation, the particle motion in the boundary layer remains uniform.
A1l the zeroth-order flow quantities for the particle phase (density,
velocity and temperature) are the same as those in the freestream or the
external flow. This is due to the fact that both the gas and the particles
move independently of each other in the zeroth-order problem. The influence
of the particles on the flow properties is prevalent only in the first or
higher order solutions, [t is a major feature of the two-phase
boundary-layer flows in the large-slip region.

Figures 6 to 8 show the first-order solutions for the gas phase, i.e.,
the solutions to Egs. {(3.37)-(3.39). They are the numerical results for the
Stokes case and the effects of Ec, Pr and w are significant this time. For
the first-order problem, the same value of the flow parameters Pr, Ec, w and
Ty were chosen as in the zeroth-order problem where Pr = 0.69-1.0, Ec =
0.1-1.0, w = 0.5-1.0 and T, = 0.5. For the non-Stokes case, the numerical
results with Pr = 0.69, Ec = 1.0, w = 0.67 and T, = 0.5 are presented in
Fig. 9. They cover quite a wide range of the particle Reynolds number
(Re, = 0.1-100.0) and the changes are very significant. For the particle
phase, the first-order solution can be obtiined by numerically integrating
Egs. (3.46)-(3.49). The results for the Stokes case with a = 1.0 are gi(??
in Figs. 10 to 12, It is seen E?gq significant changes occur in and T
with w, Pr and Ec and in fp with Pr and Ec. The results for ghe
non-Stokes case are shown in Fig. 13 where the changes with Re  are even
more significant. The computations for the particle phase is carried out
under the same conditions as those for the gas phase.

By comparing the results for the non-Stokes case with those for the
Stokes case, it is seen that the results based on the Stokes relation are
reasonable qualtitatively. They present the similar tendency of variations
in the flow properties, such as velocity and temperature. However, they are
not correct quantitatively, especially for the large particle Reynolds
number, as expected. Nevertheless, this comparatively simple case of the
Stokes relation 1is still considered in many analyses of dusty-gas flows
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since it is useful for understanding the main characteristics of two-phase
flow phenomena.

From the solution to the first-order problem, it was found that there
exist significant differences in the first-order flow profiles between the
two phases., For instance, the first-order velocity of the gas is positive
and, while passing across the bhoundary layer from the outer edge to the
wall, it increases first to a maximum value and then decreases to zero (see
Fig. 7). By -ontrast, the first-order velocity of the particles is negative
and its magnitude increases monotonically from the outer edge of the
boundary layer to the wall (c.f. Fig. 11). This arises from the fact that
the mechanisms of motion for the two phases are not the same. There are two
kinds of forces exerted on the gas: the viscous force by the gas and the
drag force by the particles. For the particle phase, however, only the drag
force of the gas influences its motion. Therefore, after entering the
boundary layer at the leading edge, the gas decreases immediately its
tangential velocity from the freestream value at the outer edge to zero
velocity at the wall due to viscosity. Since the density of the particle
material is much greater than the gas density, the particles cannot
accommodate this rapid deceleration but tend to slip through the gas as they
decelerate. It takes some time for the particles and gas to adjust to an
equilibrium state. It implies that in the large-slip region near the
leading edge, the gas has small deviation from the pure-gas boundary-layer
flow while the particles have small deviation from their original state of
uniform motion in the freestream. The particles are 'frgzen', This
situation is justified by the zeroth-order solution, which represents the
complete frozen-flow limit. The relaxation process takes place throughout
the equilibrium length A%X. In the meantime, owing to the slip velocity, the
drag force arises between the two phases and then the first-order flow is
induced by this gas-particle interaction. The gas is accelerated and the
particles are retarded. This is the reason why the two phases have their
first-order velocities 1in opposite directions. While traversing the
boundary layer from the outer edge to the wall, the slip velocity increases
and then the first-order velocity for the two phases both increase first in
the region near the outer edge, since the drag force is proportional to the
slip velocity. The first-order velocity of the particles continues to
increase in magnitude on approaching the wall, since the particle motion is
driven only by the drag force. However, for the gas phase, in the region
near the wall where the velocity gradient for the gas is great, the viscous
force prevails and the no-slip condition at the wall forces the gas velocity
to go to zero. Thus, the first-order velocity of the gas decreases in the
inner boundary layer and vanishes at the wall. A similar argument is valid
for the first-order temperature profil> by employing the correspondence of
the temperature to the velocity, the heat conductivity to the viscosity and
the heat transfer to the dray force,

Finally, for boundary-layer analyses, there are three characteristic
quantities of interest: the shear stress at the wall ¥, the heat-transfer
rate at the wall g*, and the displacmeent thickness &. As usual, they are
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determined from the flow profiles of the gas phase

. = *au* .*:_k*bT* 6*: l_p*u*d*
T (g ay*)w, Gy = - b_y*)w’ I Jdy

o ph u%

(5.1)

It is convenient to introduce the following nondimensional characteristic
quantities:

- N Re SR T 5= Re_ 5.2
Iw p?’nu‘::—z- ew’ qw |§,T;m /E’ ‘x.i e (c)

where Re, is the flow Reynolds number based on the freestream velocity u¥,
and the velocity-equilibrium length A%,

*
px, ut, A%,

- (5.3)
Tl

Re, =

Then, the nondimensional boundary-layer characteristics can be
as:

expressed
m=fgaﬂl+x&2+.”) (5.4)
v'X
dw=-i"":b1(1 +xBb, + ...) (5.5)
VX
o} =/;Cl(1+XBC2+ ...) (5'6)
where p, is the nondimensional viscosity of the gas at the wall
)
Wy = TW (5.7)
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and the coefficients a,, ap, by, by, €} and c, are given by

- (0! NN ()
a, =u (0), a, 37677167 (5.8)
b, = T(0) 0y, b, = T(L;;_:_(O_)_ (5.9)
TV (0)
¢, =) (1- “(8))dn, c,= | ulO1®) - 1O (5 4
0 7(0) 0 7(0)2

From the above relations, it is known that the coefficients a,, b; and c,
are determined only by the zeroth-order solution and that the coefficient
a,, b, and c, depend on the first-order solution as well as the zeroth-order
solution. In fact, the first three coefficients, i.e., a,, b, and ¢, give
the zeroth-order approximation of the three characteristics which is the
same as for the similarity solution of a pure gas. The other three
coefficients a,, b, and c, represent the first-order modification owing to
the presence of the particles. These coefficients can be estimated from the
numerical results using eqs. (5.8)-(5.10). In Table 1, the listed values
are the coefficients for the case where the flow parameters are Pr = 0,69,
Ec = 1.0, w = 0,67 and Ty = 0.5.

Table 1

Coefficient Values for Boundary-Layer Characteristic Quantities

Stokes' non-Stokes' Case
Case
Re=0,1 Re=1,0 Re=10.0 Re=100.0
a 0.5472 0.5472 0.5472 0.5472 0.5472
a, 1.888 1.599 2.312 3,728 9.870
b, 0.4382 0.4382 0.4382 0.4382 0.4382
b, 2.275 2.058 2.827 4,487 11.21
c) 1.101 1.101 1.101 1.101 1.101
Cy -0.6672 -0.4515 -0,7152 -1.148 -2.748
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From the values given in the above table, it is seen that the shear stress
and heat-transfer rate at the wall in the case of dusty gases become greater
than those in the case of pure gases and the displacement thickness
thinner,

5.2 Small-Slip Limit

The zeroth-order equations for the gas as well as for the particles in
the small-slip limit, Eqs. (4.21)-(4.23), are similar to the conservation
equations for a pure-gas boundary-layer flow but with modified properties.
Physically, the small-slip approximation represents a quasi-equilibrium flow
and the zeroth-order problem constitutes the exact equilibrium 1imit where
the particles are 'fixed' to the mass of the gas so that the gas and
particles move together 1like a perfect-gas mixture. For the dilute
two-phase system with the approximation of negligible volume fraction of the
particles, the particles contribute to the mixture density but not to the
viscosity [23]:

P o= (148) p* (5.11)

o= pr (5.12)

The other thermodynamic properties are given by

5 =<} ll_“TWT" (5.13)

I* = k* (5.14)

Then the modified similarity parameters can be expressed as

— (X

pr =P " _prlt Bla (5.15)
— 1+8
K*

—_— u*z

Ec = 2 = Ec M_)_ (5.16)
o T* at B
p -]
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» Substituting the modified Prandtl number and Eckert number into Eqgs.

‘d' (3.18)-(3.20), which are exactly the same as the boundary-layer equations
a. for pure gases as mentioned before, the resulting 'modified' equations are

Just the zeroth-order -equations for the small-slip 1limit, Eqs.
(4.21)-(4.23). It implies that in the zeroth-order approximation, the
i~ gas-particle mixture behaves like a pure gas with modified thermodynamic
i properties. In this paper, the numerical solutions in the smali-slip limit

s are calculated for the condition of a = 1,0. Under this condition, the

zeroth-order equations (4.21)-(4.23) for the small-slip limit reduce to .
" those for the large-slip limit, Eqs. (3.18)-(3.20). The results are given
& in Figs. 3-5. Clearly, in the small-slip limit, the zeroth-order velocity
! and temperature for the particles are the same as the ones for the gas.
i From Eq. 64 .24), it is found that the nondimensional density of the p Slcle
W phase p is equal to the nondimensional density of the 9?8 phase

the rec1proca1 of the nond1®ens1ona1 gas temperature 1/T It 15 seen
u from Fig. 14 that p , Or p varies monotonically from its max1mum value
") at the wall to its freestream value at the outer edge. In this report, the
» constant wall temperature T, is specified as Ty = 0.5 and then the
{2 density at the wall is equal to 2, as shown in Fig. 14, From Eqs. (4.9) and
" (4.10), the densities in the dimensional form are given by
lﬂ
" p* = p% p, 5 = Bo% pp (5.17)
&I
»

Neglecting the small quantities of first order, the above gas and particle
& densities are approximated by
3
b, o* = px p(0), Py = Bek pF(,O) (5.18)

s Therefore, at all points of the boundary layer in the small-slip region,

©
*

= B (5.19)

o
©
*

It means that the constant loading ratio of the particles holds across the
whole boundary layer in the small-slip region. In other words, the solid
particles remain attached to their original gas mass and always move

! together with this gas mass. The two-phase system behaves like a gaseous
ol mixture., It is a major feature of the gas-particle flow in the small-slip
- region,

'!!

The slip quantities ugl), vgl) and Tgl) are given in Figs, 15 to 17,

N where the effects of the flow parameters Pr, Ec and w on the first-order
N
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flow of the particles are shown. In fact, the slip quantities represent the
first-order approximation for the particle phase. It is seen that the
profile of the normal slip velocity Vg is different from that of the
tangential slip velocity ué . At the outer edge of the boundary layer, the
tangential slip velocity becomes zero but the normal slip velocity
approaches a finite value, since the boundary conditions for the tangential
and normal velocities are different in boundary-layer analyses. As in the
usual boundary-layer problems, the tangential particle velocity at the outer
edge of the boundary layer should be equal to the freestream value and then
the slip velocity should become zero at the outer edge. However, no similar
boundary conditions at the outer edge can be specified for the normal
velocity. The unigque boundary condition for the normal velocity is that it
is equal to zero at the wall. Owing to the continuity equation, the normal
velocity is induced and approaches its maximum value at the outer edge.
Therefore, the normal slip velocity at the outer edge takes a finite value
which is the difference between the normal velocities of the two phases at
the outer edge. In addition, by comparing Fig. 15 with Fig. 11, it is found
that there exist significant changes in the first-order profile for the
tangential velocity of the particles in the two limiting regions. In the
small-slip region, the particle slip velocity at the wall is equal to zero,
while in the large-slip region, the first-order velocity of the particles
has its maximum value in magnitude at the wall as mentioned earlier. As a
result of the maximum slip velocity, the interaction term between the gas
and the particles has its maximum value at the wall and then the maximum
deceleration of the particles takes place along the wall. Hence, at some
distance from the leading edge, the particle velocity at the wall reduces to
zero and is equal to that of the gas. After this point the particles keep
their zero velocity at the wall because of the zero slip velocity. This
special point, where the particle velocity becomes zero at the wall, is
defined as the critical point for the gas-particle boundary-layer flow. At
the critical point, the dusty-gas boundary layer essentially fulfills the
transition from the quasi-frozen flow to the quasi-equilibrium fiow. The
two-phase flow in the small-slip 1limit 1is a typical -example of a
quasi-equilibrium flow, By comparing Fig. 17 with Fig. 12, the same
situation happens to the first-order temperature of the particles in the two
limiting regions: at the wall, the first-order temperature has its maximum
value 1in the large-slip region and the temperature defect vanishes in the
small-slip region. A detailed discussion is omitted here, since it is
similar to the above case of velocity. Similar to the large-slip case, it
is interesting to obtain the expressions for the boundary-layer
characteristic quantities. However, in the small-slip case, since there are
no solutions available to the first-order equations of the gas, they can be
expressed only in zeroth order. Similarly, the three boundary-layer
characteristics are given in the nondimensional form:

5 = X (g ay) (5.20)
VX
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Gy = - X (/¥g b)) (5.21)
vX
5= /x (L) (5.22)
/148

The coefficients a;, b; and c¢; in Eqs. (5.20)-(5.22) have the same values as
in Table 1. By contrast with the large-slip 1limit, the zeroth-order
expressions for the boundary-layer characteristics in the small-slip limit,
Eqs. (5.20)-(5.22), involve the effects of the particles. In fact, the term

Y1+8 in Eqs. (5.20)-(5.22) represents the alteration of the boundary layer
by the particles. In the small-slip limit, the two-phase system acts like a
single gaseous system with modified properties as pointed out before. With
Egs. (5.9)-(5.10), the 'modified' similarity variable T becomes

ux / (1+B)u* —
Z_y* = _.._._._( b) Zy* = n e /148 (5.23)
2V% x* 2V5 x*

This implies that the boundary-layer flow of a dusty gas in the small-slip
1imit corresponds to a similarity solution with the normal scale modified by

the factor v1+B, owing to the particles. Consequently, the shear stress and
heat-transfer rate at the wall increase and the displacement thickness

decreases by the same factor of v1+B. Therefore, it can be concluded that
the presence of particles enhances the shear stress and heat-transfer at the
wall and thins the boundary layer in the two limiting regions. This
tendency can be seen in Figs. 18 and 19, where the shear stress and
heat-transfer rate are shown as functions of the nondimensional distance x
for the cases with and without particles. As expected, the results for the
large-slip limit and the small-slip limit coincide with the pure-gas results
in the limits x + 0 and x + =, respectively. Note that the large-slip
results when x > 0.1 and the small-siip results when x < 10 are meaningless
since the aysmptotic solutions are not valid. Physically, the changes in
the characteristics caused by the particles can be explained as follows.
The gas-flow profiles with and without particles are schematically shown in
Fig. 20. As a result of the interaction, the gas velocity and temperature
increase in the cold-wall case (say, T, = 0.5). Then the derivatives of
the gas velocity and temperature with respect to the normal coordinate y* at
the wall become greater than those without particies. These changes result
in an increase in the shear stress and heat-transfer at the wall, since they
are proportional to those derivatives. In addition, the boundary layer
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.‘_‘: becomes thinner since the velocity approaches its freestream value more
*§: quickly.
?:7""“‘
. The numerical results for the asymptotic solutions using the
L5 series-expansion method were compared with the finite-difference solutions
N2Y in the two limiting regions. The agreement between the asymptotic solutions
;:3-: and the difference solutions was excellent [1].
-0

L,

N 6.0 CONCLUDING REMARKS

PR,
“'\:1 Some general conclusions obtained from the asymptotic solutions of the
N flat-plate boundary-layer flow of a dilute gas-particle mixture are
% summarized as follows:

o (1) The asymptotic solutions to the dusty-gas boundary-layer equations can
}f:\ be obtained using a series-expansion method. They describe the
-;j: limiting properties of two-phase flows in the large-slip region and the
K. small-slip region, which are characterized by a frozen flow and an
St equilibrium flow, respectively. The asymptotic solutions are in
ot excellent agreement with the finite-difference solutions.

a7
"::f.' (2) The interaction between the gas and particles determines the flow
"‘;f. properties of the particle phase, and influences strongly the flow
Wwh properties of the gas phase in addition to the viscosity. When the
e particle slip Reynolds number is high, a proper expression for the drag
" \ and heat transfer between the two phases should be specified instead of
e using Stokes' relations. The results when using Stokes' relations are
‘;: reasonable qualitatively but not correct guantitatively for a Reynolds
" number greater than unity.
'c;' (3) For a given gas-particle system with specified values of the mass
{l loading ratio and the ratio of the specific heats of the two phases,
) ::f similar to the case of high-velocity viscous flows of a pure gas, all
i~ of the following parameters are important for the analysis of
R compressible laminar boundary-layer flows of gas-particle mixtures:

y Reynolds, Prandtl and Eckert numbers as well as the transport
:-V' ties (viscosity and heat conductivity)
::, proper y y).
1:" (4) For compressible, laminar, boundary-layer flows of dusty gases, the
E“ﬁ shear stress and the heat-transfer rate at the wall increase and the
—_— displacement thickness decreases when compared with the corresponding
:;, . results for a pure gas. Owing to the presence of the particles, the
‘-;-; gas velocity and temperature increase on a flat-plate boundary layer
‘p"’ with a cold wall. As a result, the velocity and temperature gradients
::'o at the wall for the gas phase increase so that the shear stress and

\
heat transfer are enhanced and the velocity achieves its freestream “
o value at a shorter distance from the wall so that the displacement J
J
|

- thickness of the boundary layer is decreased.

* .
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5

A RELAXATION PROCESS AND VELOCITY EQUILIBRIUM TIME

;: In gas-particle flows, generally speaking, the gas and the particles
i may have different velocities and temperatures, and as an immediate
. consequence the two phases must interact. Every particle experiences a drag

- force and exchanges heat with the gas. The same happens to the gas but in
:A the opposite direction. Consequently, the velocities and temperatures tend
ﬁ: to approach each other, and the instantaneous rate of this approach depends

on the instantaneous velocity and temperature differences between the
Y particle and the gas. This phenomenon, which is usually known as the
relaxation process, is a major feature of gas-particle flows. A discussion
of the viscous drag between the gas and the particles and of the velocity

1} relaxation process will illustrate the relaxation processes in a two-phase
‘f system.

>y

Y For the case qf a single spherical particle in a viscous flow, if the

particle velocity Up (here the unstarred quantities denote dimensional flow
>

“

. properties) is different from the gas velocity U, the viscous drag exerted
:# by the gas on the particle depends on the relative, or slip, velocity
L > > >

~ (U, - U). As usual in fluid mechanics, the drag F is expressed by means of

a drag coefficient Cp which is defined in terms of the dynamic head of the
relative flow and the frontal area of the particle:

o

b

",'_ > 1 > > > > o2

- = 2 - - = A.

y Fr=Cply olU - Up) U - Uyl 2d%) (A1)
;¢

_j where p 1is the gas density and d is the particle diameter. On the
N right-hand side of Eq. (A.1), the square of the relative velocity is written
o in this manner to ensure that the drag force always has the correct sign,

The drag coefficient Cp is a function of the particle slip Reynolds
o number

Cp = CplRey) (A.2)

where Reg is the slip Reynolds number based on the particle diameter

> >
U, - U|d
Res = _p_|._2__..__l__ (A.3)
u
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where p is the gas viscosity.

For the Stokes case, with a low-slip Reynolds number less than about
one, the drag coefficient takes the simple form

Cp =24 (A.4)

This is the Stokes relation for the drag force. For a higher slip Reynolds
number (Reg > 1), there are several empirical relations for the drag
coefficient given by different investigators. It is convenient to write

Cp = Cp, * D(Rey) (A.5)
or
C
D =0 (A.6)
cDO

where D is the so-called normalized drag coefficient in this analysis. It
is clear that D(Reg) = 1 corresponds to Stokes' drag.

The above discussion deals only with isolated particles. Of course, if
there is an appreciable number density of particles, the effective, or
apparent, drag coefficient may be different from that for a single particle
because of some forms of interaction between the particles, such as direct
collisions and particle-wake interaction. At present, there are no adequate
analytical or experimental results available for these interactions. In
this report, the case of a dilute gas-particle mixture is considered, and it
is reasonable to assume that the drag coefficient for a single sphere is
valid for the particle cloud. Therefore, if the drag coefficient takes the
form of the Stokes relation, the drag force on every particle is

» 24 1 > k4 > > n 2
F=28 (L u-u)u-u, =d
Res {2 o p)l pl }
- 24 {m2 <)- > _ -+
P =g e(U Up)lu Upl}
pIUp-Uld/u
> >
= 3nud(U - U,) (A.7)
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Let np denote the number density of the particles, pp the density
of the particle phase, pg the density of the particle material and m the
mass of a particle. Then

m=p; *2d? (A.8)

n.=%.-_ % (A.9)

The force per unit volume of the gas-particle mixture acting on the gas,
»> >

D = iDx + EDy, can be given as

> >
D = =Ny * F
P, > >
= P e 3md(VU, - U)
P *Xd3
S 6
> >
U, - U
= P p (A.10)
T,
v

where 1y is defined as the particle velocity-equilibrium time

d2
T, = 250 (A.11)
18p

The velocity-equilibrium time +t, depends on the density of particle
material, the particle diameter and the gas viscosity. Some typical values
of the velocity-equilibrium time are given in Table 2, where the particle

material density gy = 2.5 g/cm3 (typical of crown glass).
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Table 2

Typical Values of the Particle Velocity Equilibrium Time (ms)

Gas Particle Diameter d (um)
Temperature .
T {K) 10 20 40
300 0.755 3.02 12.08
400 0.605 2.42 9.68
500 0.510 2.04 8.16

Physically, T, is the time required for a particle to reduce the slip
velocity to e=! of its initial value. To examine this criteria, consider a
flow field with constant gas velocity and temperature. For the particles
moving in this flow field, Newton's law of motion becomes

>
du >
m—P =F (A.12)
dt
Substituting Eqs. (A.7) and (A.8), Eq. (A.12) becomes
_)
*
Y. F
dt m
> >
_ 3mpd(U - UB)
LT 43
P 5 d
=18p (. q)
2 p
pgd
2
AT > >
S U -
o - p (A.13)
'jit
ha
,.d)u
;ﬁf'
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Since the gas velocity and temperature are assumed as constant, i.e., ! and
Ty are constant, Eq. (A.13) is readily integrated with the result

U -U= (U . - Ue (A.14)

>
where U ,0 is the initial velocity of the particles at t = 0. This result
indicates a typical velocity-relaxation process in which the slip velocity
decays exponentially. From Eq. (A.14), it is known that the velocity-
equilibrium time =ty is the time elapsed for a particle to reduce its
original relative velocity by e-!, It should be pointed out that, in fact, .
the velocity relaxation process is not completed in the velocity-equilibrium

time 1y, since the slip velocity still has an appreciable value, i.e., ‘
about 37% of its original value. In addition, if the gas veiocity and
temperature are not constant, or Stokes' drag does not apply, Eq. (A.13)
becomes more difficult to solve, and the solution is no longer a simple
exponential decay of the slip velocity, Eq. (A.14). Nevertheless, the
parameter T, remains a convenient measure for the tendency of the
particles to reach velocity equilibrium with the gas.

For the non-Stokes case, the drag force on every particle is given by

> >

> 1 L d > T 2
F=0Ch t=po(U-U)U-U. | =d<}D

>

= Inud(U - U0 (A.15)

The drag force per unit volume exerting on the gas by the particles is
obtained as

> >
D= -Npy « F
» »
u. - U
=p P D (A.16)
Pt
v
or
u. - u V., = V
D, =p. P ____D, D, =op. PL__ D (A.17)
X - y e
Vv v
A.5
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b where u and v are the velocity components for the gas, and up and vp for
Rt the particles: '
‘.
- > 2 ® T A
.' = + = .
< U= 1iu+ jv, p = Tup * v (A.18)
o The dissipation function due to the relative motion of the particles is
\'3
"p::' > > >
::;:_ ¢—D’(Up-U)
"' = - -
:j (up u)d, + (vp v)Dy (A.19)
-~
‘:'v
[~ The heat transfer from a particle to the gas has the form
T
- T, - T
q = k(m?) B+ Nu
s d
.::\
_ where k is the heat conductivity of the gas, Nu is the Nusselt number, and
K. Tp and T are the particle and gas temperatures, respectively. Then the
Q}ﬁ total heat transfer to the gas per unit volume is given by
o
. Q = np *q
e ¢
D '.4
\": o) T
'4.'.‘:- = Pk e m?2_ P ____ Nu
o0 pg = d°
' -1
q.'.;
) =g T - M
L deZ
s
r T, - T
= pcg LN (A.20)
. p TT 2
¥
2L where c, is the specific heat of the particle phase and 71 is the

temperature-equilibrium time:

()




":;' X B Psd 2

e o= T Cg (A.21)

e The temperature-equilibrium time <1 can be expressed in terms of the
o velocity-equilibrium time ty:

3 2
R . o = Psd” 18, s
18 12k

54 3 ppr Ss (A.22)
A 77 '

‘:;‘E; where ¢, is the specific heat at constant pressure for the gas and Pr is
j the gas Prandti number:
Y

pr = P" (A.23)
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FIGURE 1. SCHEMATIC OF A DUSTY-GAS BOUNDARY-LAYER OVER A SEMI-INFINITE FLAT
PLATE. REGION I: LARGE-SLIP REGION. REGION II: MODERATE-SLIP
REGION, REGION III: SMALL-SLIP REGION,
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75 FIGURE 2, ASYMPTOTIC FLOW PROFILES IN THE TWO LIMITING REGIMES.

o (a) FROZEN FLOW; (b) EQUILIBRIUM FLOW,
R —— GAS; --- PARTICLES,
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. FIGURE 3, THE ZEROTH-ORDER FUNCTION f(O) FOR THE GAS PHASE.
(a) Pr = 1,0, Ec = 1.0 and » = 0.5, 0.67, 0.77 AND 1.0,
X RESPECTIVELY.
h (h) Ec = 1.0, . = 0.67 and Pr = 0.69, 0,72, 0.75 AND 1.0,
. RESPECTIVELY.
y (c) Pr = 0.69, « = 0,67 AND Ec = 0.1, 0.4 AND 1.0, RESPECTIVELY.

- . . o .. " T AN R T ("{( ‘J‘ " R - '
,1!..!':‘§'A.‘|"....‘.‘. !.,."‘. A "J!..’! J ,' e M n "- i b s y A L % ‘ ﬁ‘ ..'Q ! T\l b""lir‘)\ ‘ “.i.‘ .'Q e .“. ' .!‘"!...;"
s




e bt L

TN ww

W WY T YT YT

10 . Or“_—r‘“\'“r‘—‘*—r‘—“ YT T T Y Ty T T Ty
§.0 r 1.EC=0.100
2.EC=0.400
8.0t 3.EC=1.000
7.0 }
6.0 }
)
y.o }
w=0.666 ]
3.0 }
PR=0.690
2.0 | .
1.0 } 4
{c)
O 0 | _ ! 1 X —_ . L __
"“0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
7
FIGURE 3 -~ CONTINUED
T 1 e Sl T "
|
|
1. @=0.500 )
2. W=0.666 |
3.W«0.770 }
y.W«1.000 l
N
¢ T
‘29
X\
Et{ PR=1.000 |
Nyt EC=1.000
4
B
ggg
o 1
W04
o
o e 0 w0 9o oo
X FIGURE 4. THE ZEROTH-ORDER VELOCITY u{D) FOR THE GAS PHASE.
(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.,
(b) Ec = 1.0, w = 0.67 AND Pr = 0,69, 0.72, 0.75 AND 1.0,
RESPECTIVELY,

Pr = 0,69, w = 0,67 AND Ec = 0.1, 0.4 AND 1.0, RESPECTIVELY,

: I:-rtﬂ:f‘




oy

A

1.PR=0.690 )
2.PR=0.720
3.PR=0.750 ]
4.PR=1.000
w=0. 666 ]
EC=1.000
(b)
50 6.0 7.0 8.0 9.0 10.0
/]
1.EC=0.100 1
2.EC=0.400
3.EC=1.000 4
)
u -
w=0.666 4
PR=0.690
-
(¢)
0.0 SR USRI U U S RS U
6.0 1.0 2.0 3.0 y. 5.0 6.0 7. 8.0 9.0 10.0
7
FIGURE 4 - CONTINUED

. Aa - - » x » TR L L ) R R TN A PR LTS P MO SR TR TRY
AL DN NI RTIR OO N A " e 3 AR RN SRRy

n . 3 2 .



RS

o

» o
»

P e

FIGURE 5.

- . 1. w=0.500 7
: 2. W=0.666
- 1 3'0’-0-770 j
u.w-llooo
PR=1.000 !
EC=1.000
(a) |

. 1 I 1 —1 1 1 1 1
.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Y]
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RESPECTIVELY.,
{¢) Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4, AND 1.0,
RESPECTIVELY.
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FIGURE 8. FIRST-ORDER TEMPERATURE (1) FOR THE GAS PHASE IN THE LARGE-SLIP
LIMIT FOR THE STOKES CASE.

(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1,0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY,

(¢} Pr = 0,69, w=0.67 AND £c = 0,1, 0.4 AND 1.0, RESPECTIVELY,
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a&:; LARGE-SLIP LIMIT FOR THE STOKES CASE.
K (a) Pr = 1,0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
By RESPECTIVELY.

(b) Ec = 1.0, & = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
— RESPECTIVELY.
,::v (¢) Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
. RESPECTIVELY.
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f!( 2
Ve (a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
f.*j RESPECTIVELY,
AN (b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,

RESPECTIVELY,

o (c) Pr = 0.69, w» = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
o RESPECTIVELY,
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RESPECTIVELY,

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1,0,
RESPECTIVELY,

(¢) Pr = 0,69, w = 0.67 AND fc = 0.1, 0.4 AND 1,0,
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{a) Pr = 1,0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.
(b) E¢ = 1.0, w = 0.67 AND Pr = 0,69, 0.72, 0.75 AND 1.0,
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() Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
RESPECTIVELY.
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¢ RESPECTIVELY.
X (b) E¢ = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY,
- () Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
o RESPECTIVELY.
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i. “ ~—— PURE-GAS SOLUTION; ~-- LARGE-SLIP SOLUTION FOR THE DUSTY
iy GAS; —— SMALL-SLIP SOLUTION FOR THE DUSTY GAS.
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4 FIGURE 19, NONDIMENSIONAL HEAT-TRANSFER RATE AT THE WALL AS A FUNCTION OF
¥ THE NONDIMENSIONAL DISTANCE x.

—_— PURE-GAS SOLUTION; --- LARGE-SLIP SOLUTION FOR THE DUSTY
N GAS; == SMALL-SLIP SOLUTION FOR THE DUSTY GAS.
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! PARTICLES.
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4 (a) VELOCITY; (b) TEMPERATURE.
—e«—— WITHOUT PARTICLES; ——— WITH PARTICLES.
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